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On the Computation of Some Grunsky Coefficients 
Relevant to the Bieberbach Conjecture 

By George G. Ross 

Abstract. The Bieberbach coefficients a8, a10, al2 are parametrized in terms of the Grunsky 
coefficients. A digital computer is used to carry out the necessary integer calculations. 

Introduction. The Bieberbach conjecture asserts that the nth coefficient of any 
univalent function 

f(z) = z + a2z2 + a3z3 + *. + anzn + ... 

defined in the unit circle, satisfies the inequality JanJ < n, with equality holding only 
for the Koebe function 

K(z) = z/(l _ Z)2 = z + 2z2 + 3Z3 + 

and its one-parameter family of rotations e&'K(e'0z). The earliest results in this 
direction were Koebe's one-quarter theorem [6] and Bieberbach's proof of the sharp 
estimate la21 < 2 [1]. Later Loewner [7] established the deeper inequality la31 < 3 
which has also been obtained by Schiffer, Schaeffer, and Spencer [9], [10], [11], [12] 
using variational methods. Garabedian and Schiffer [3] showed la,1 < 4 in 1960 and 
Pederson obtained the result la61 < 6 in 1968 [8]. 

Of central importance in this theory, at least for the even coefficients, is the 
following theory of Grunsky [4]: 

A necessary and sufficient condition for 

f(z) = z + a,Z2 + a3z + ... 

to be univalent in the unit circle is that the sharp inequalities 

Re : E CnrnXnXm} < E IXni2 
n,_m= I n-I 

hold for all choices of the com-plex parameters XA where the cnan are the coefficients in 
the double power series 

lo Z - [ (w)] E. (Cn )1 /' 

The above series converges in the bicylinder lzl < 1, l vl ! I if and only if f(z) is uni- 
valent. 

The function (f(z2))"2 is easily seen to be univalent if and only if f(z) is, and so we 
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may generate coefficients Cnrn as polynomials in the ai from the expansion 

[(f(z2))1/2 (f( w2))1/2] = Cnm 

and then impose the Grunsky inequalities on the Cnm in order to get estimates on the 
Bieberbach coefficients ai. A truncated set of these inequalities involving the Cnm has 
been found sufficient to resolve the conjecture for n = 2, 4, 6 and also to provide 
local confirmation for all even coefficients (Garabedian, Ross, Schiffer [2]). In that 
paper, it was shown that, for all univalent functions sufficiently "near" the Koebe 
function K(z), the 2nth coefficient is not greater than 2n. Examination of the above 
work on the even coefficients suggests that the truncated set of Grunsky inequalities 

k k 

Re E (2p - 1)'/2(2q - 1)' t2 I 2I X 2 - E 1X2p-112 
P,U=l p-l 

contains enough information to resolve the Bieberbach conjecture for a2k. 
In this paper, we report on results obtained by introduLcing a computer to develop 

the relevant parametrizations of as, a1o, al2 in terms of the C2,1,2q_1. These are the 
extensions of the formulas which, under the restrictions of the Grunsky inequalities, 
resolve the conjecture in the affirmative for a2, a4, a6. It is believed that the imposition 
of the Grunsky conditions on the new expressions will settle the conjecture affirma- 
tively for as, a,o, a12. We already have mentioned that these parametrizations suffice 
to yield the result locally in a neighborhood of the Koebe function K(z). 

This work is a first step in a larger plan to develop algorithmic techniques which 
will help to resolve the Bieberbach conjecture through the use of a computer. The 
need for such techniques is evident when one notes the formidable amount of hand 
calculation involved in the highly nonlinear global proofs of a, [3] and a,, [8]. It seems 
likely that futuire global results will rest on compuiter techniques and algorithms. 
These will simultaneously provide a check on the laborious hand calculations men- 
tioned above which are too seldom checked by hand. 

In Section II, we describe how the coefficients C2_12 ,-_ are generated as poly- 
nomials in the coefficients a, of the univalent J(z). 

In Section III, we develop the polynomial parametrizations of a8, a10, a,2 and 
also certain identities which exist between the elements C2 l ,2a, of the parametriza- 
tion. 

Finally, in Section IV, we consider the relevant expressions for the Bieberbach 
coefficient as and suggest how the maximum principle for several complex variables 
can be used to reduce the number of parameters involved. The role of the identities 
in the reduction is also discussed. The general technique for arriving at a parametri- 
zation which works globally for a2,m is illustrated. 

Note. The appendices referred to in the text appear in the microfiche section at the 
end of this issie of Mathematics of Compitation. 

II. This section describes the development of the Grunsky coefficients C:1 

(i, j odd) in the double power series 

I (f(Z2))1/ (f(W2))1/ ] ic z log ir= th ,i univ fi 

The C:, are polynomials ini the a,, coefficients of the univalent function 
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f(z) = z + a2z2 + a3z3 + 

To carry out the development we write 

(f(Z2))112 = Z(j + a2z2 + a3z4 + + a z2 n-') + )l/2 

and apply the multinomial theorem to the term 

x(z) = a2z2 + a3z4 + 

in the expansion 

(1 + x(z))1/2 - 1 + 2X(Z) - lx2(z) + 

This yields the series expansion for (f(z2))"2 in the variable z. If we subtract the 
series for 

(f(wt,2))"1/2 
from the series for (f(Z2))1"/2 

and divide by the factor z - w, we have 

(I(Z2))l/2 - (I(W2))l/2 1 + la2(z2 + ZW + w2) 

z - w2 

+ (a3 - Ia2)(z4 + Z3W + Z2W2 + ZW3 + W4) + 

+ Pn( )(Z2n + Z2n-1W + + W2n) + 

where the Pn are the polynomials in the ai determined by the square root expansion 
and the multinomial theorem. The final formula for the Ci, is attained by identifying 
the expansion above with I + Y(z, wv) and again applying the multinomial theorem to 
the quantity Y in the series 

log[, + Y(z, w)] = Y(z, w)- Y2(Z' W) + Y3(Z' W)+ 2 3 

The final expression is 

Cii= Cij(al, a2, aa. 
, *A)a' ac ...t' 

over all nonnegative ai such that 

al + 2a2 + + l/a= + j, 

where 

Ciij(aX1, CX2, ***,CXI ) 

i/2] (_1)(A-S+l) ( i/2 - k + A - S 

k-0 2(i/2-k + A -S) Is, S2, St, al - SI ,al -St 

and the inner summation is performed over all s,, such that 

O C Sn a. and s + 2s2 + '+ Is= k. 

In the above, 

A = al + a2 + + a1, S = sI + s2 + + St 

and [ ] denotes integer part. 
These formulas agree with a more general set of formulas for Grunsky coefficients 

worked out by Hummel [5]. 
A Fortran program was written to implement the above expressions on an IBM 

360/50 computer. All calculations were done in fixed-point arithmetic to insure 
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precise results. The basic arithmetic operations involved are the addition and multi- 
plication of ratios of integers. Denominators other than one are generated by the 
factorial coefficients appearing in the expansions of (1 + x)"2 and log(l + Y). The 
program quickly produced overflow in the IBM 32-bit fixed-point calculation, and 
a special routine performing Euclid's algorithm was included to reduce a/b + c/d to 
lowest terms. Finally, the program was run on the CDC 6600 where 48-bit fixed-point 
arithmetic is simulated. On this machine, the program successfully calculated all 
Ci i (i, j odd), i, j _ 11. These results appear in Appendix A. 

The results can be extended for higher i, j, either by using the present program on 
a machine with larger word size or by modifying it so that the arithmetic operations 
are carried out by a multi-precision subroutine. 

III. In this section, we convert the expression obtained in the last section into 
formulas for the an as polynomials in the C21,2q_. We have a double array of 
coefficients C21,2a_1 which depend on the single sequence of variables a2, a3, * * *. a, 

with n < p + q. Thus, identities arise between the elements C2p_ 2q-1. The first such 
identity occurs between the elements C1l, C13, C15, C33: 

C15 = --3C31 + JC33 + C11C13. 

Appendix A shows clearly the existence of other identities. In fact, the k(k + 1)/2 
elements of the symmetric matrix C2z, ,2,_l (p, q ? k) depend on the 2k - 1 coeffi- 
cients a2, a3, a A,, , * * , a2k. Hence, there are 

k(k_+ 1) 2k + 1 = - -k + 1 
2 2 2 

identities between these C2,_1 12,_1 
The formula manipulation involved in generating the a2, as polynomials in the 

C2,_-12,-, and in generating the attendant identities was carried out by means of an 
assembly language program written for the IBM 360/50. The program first sets 
a2 = 2C11 and then proceeds recursively for p + q > 3 through expressions for the 
C2Z, 1,2,l given in Appendix A. If p - q, the expression for a2, is computed by 
replacing all an with n < 2p by previously computed polynomials in the C2, 2q-1. If 
p = q - 1, the expression for a2,_- is computed in the same way. If p = q - 2, an 
identity is generated by replacing all a. in the expression by previously computed 
polynomials in the C2p_ ,2_1. The validity of the algorithm is established by observing: 

(1) C2P. ,2p 1 is linear in a2p, 

(2) C2V_ 3 ,2p-1 is linear in a2,.1, 

(3) C2. -1,2,l depends only on a2, a3, *, 2a2 ifp < q - 2. 
Throughout the calculation, numerical coefficients were carried as the ratio of 

fixed-point integers to avoid loss of precision. Overflow problems on the IBM 360/50 
demanded the same delicacy of arithmetic manipulation discussed in the previous 
section. Results of the computation appear in Appendix B. 

The author acknowledges the major contribution of Mr. Aaron W. Weg in his 
assistance in the preparation and debugging of this program. 

IV. The polynomial expressions for a2n, given in Appendix B, must be subjected 
to the Grunsky conditions 
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Re (2p- 1)112(2q- 1)1/2C2pi,2q-1X2V.1X2a-i} ? E 1X2v-l 
1 

A result of Schur's [13] enables us to rewrite the above conditions in matrix notation as 
C = TD 

' 
C-UDU, 

where C is an nth order square symmetric matrix with elements 

(2p - 1)1/ (2q - 1)1/C2.2,,-2.2q-1 (p, q ? n), 

U is a unitary nth order matrix, and D is a diagonal matrix whose entries have absolute 
value less than or equal to one. In previous work [2], the maximum principle for 
several complex variables was invoked to show that for the maximum modulus of 
a2f, the diagonal elements of D actually assume the value one. Thus, C becomes 
simultaneously unitary and symmetric. Maximization over all such unitary matrices 
has yielded the Bieberbach conjecture for a4 and a6. 

An application of the new formulas generated is made to the study of the eighth 
Bieberbach coefficient. The parametrization for a8 from Appendix B is 

2- 16 - V31 -15 + 46-r2 8 
as = 7 C77 + 3V\15 C33C35 + CC+ 9 C33 + V35 C11C57 

+ 4 - + 34 C C C3C + 76 + 18C2 
133 + 5 C1113C35 3 / J1C3 + Cud55 

172 -2 + 80 -3 410 -3 -2 82 -4- 
+ 11g3ClC31C33 + -3\ 15 C35 + 9~ C!1C!3 + - C11C33 + 

\3V 
C 

3V\15 
"1 9 9 

184 -5 - 2764 -7 
+ 

15\/3 11C13C - 315 - L1. 

Because the ten elements C2,12 ,_l, p, q _ 4, depend only on the seven coefficients 
a2, a3, a4, a5, a8, a7, a8, there are three identities which hold between these elements. 
They are (from Appendix B) 

Identity 1: C15 + C33 + CVIC13 C3i = 0, 

Identity 2: e7Cl + C35 + C13 + Cl1C33 _ ClI = os Identity 2. 
\V7 V/I5 3 3 3 =0 

Identity 3: -_ 37 + C55 + C13C33 _ C1IC13 + 2C11C13 __ C1l = o, 
V\21 5 3V\3 3 2V\3 -0 

If we assume the C2,_1 ,2a_ are independent complex variables subject only to the 
Grunsky inequalities in the formula for a8, we can apply the maximum principle for 
several complex variables to obtain a significant reduction in the twenty parameters 
required to represent the complex symmetric matrix 

(C2V_1, C2_1), p, q < 4. 

We have mentioned above that the greatest modulus of a2 must be assumed when the 
above matrix satisfies unitary constraints and so requires only ten parameters to 
represent it. But our assumption of independent variation of the C2,-1 ,2,l precludes 
the possibility of imposing the above identities on the elements of the unitary matrix 
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Cll C13 C15 C17 

C13 C33 C35 C37 

C15 C35 C55 C57 

C17 C37 C57 C77) 

To compensate for this situation, we exploit the flexibility in choice of the formula for 
a8 which the identities provide. We add multiples of the three identities to a8 in the 
form of Lagrange constraints. We form 

a8 + 1C1 + X2C 1C13 + X3CllC15 + X4CllC33 + X5C17 + XC35) Id 1 

+ (A7C + X8C12C13 + X9C33 + X10C15) Id 2 + (XC + X12C13) Id 3 

+ X13C41(Id 1)2, 

where 

Id 1 is the left-hand side of Identity 1, 
Id 2 is the left-hand side of Identity 2, 
Id 3 is the left-hand side of Identity 3. 

In our selection of parameters, we have preserved the homogeneity of a, in the sense 
that, if Cnm is replaced by Cnmet OnCi m then a factor e'"0 is brought out of the new 
expression for a8. This homogeneity has the desirable feature that the rotation above 
not only leaves invariant the class of matrices C2,1 ,2,-l obeying Grunsky's inequali- 
ties, but also leaves the value of 1a81 fixed. 

We now seek to choose the parameters Xi so that, when the unitary symmetric 
matrix is represented in the form C2,1 ,2q-1 = eiA (p, q _ 4, A a real symmetric 
4 X 4 matrix), the resulting expression for Re{a8,} will have a local maximum with 
respect to the 10 elements of A at A e 0. The situation A _ 0 corresponds to 
I C2p-'1,2a-1 } equal to the identity matrix and to F(z) equal to the Koebe function K(z). 
Clearly, if our formula for a8 is to yield the Bieberbach conjecture, it must have a local 
maximum at the Koebe point. Experience has indicated that those formulas which 
confirm the conjecture locally at K(z) can be extended to global confirmation of the 
conjecture (cf. (2)). 

To carry out this choice of Xi, we write out the exponential expansion up to 
quadratic terms in the elements of A = (ai j): 

eiA = I+ iA - 

We then have: 

Ell- 1 + iall - '(a 1 + al2 + al3 + al4), 

C13 = 0 + ia12 - (a11a12 + al2a22 + al3a23 + al4a24), 

C15 = 0 + ia13 - 1(aiia13 + al2a23 + al3a33 + al4a34), 

C17 = 0 + ia4 - -(aiia14 + al2a24 + al3a34 + al4a44), 

(C33 = 1 + ia22 - 2(al2 + a2 + a3 + a24), 

C35 = 0 + ia23 - 2(al2al3 + a22a23 + a23a33 + a24a34), 
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C37 = 0 + ia24 - 2(al2al4 + a22a24 + a23a34 + a24a44), 

C55 = 1 + ia33 - 2(a 3 + a3 + a4 + a34), 

C57 = 0 + ia34 - I(al3al4 + a23a24 + a33a34 + a34a44), 

C77 = 1 + ia44 - 2(al4 + a24 + a34 + a44). 

We next calculate the constant, linear, and quadratic parts of Re a8 and of each 
expression to be added to it. There is one such expression for each xi in expression 
(1). Special routines were written to carry out the arithmetic involved in the tedious 
computation of the local behavior of a8 and the identities. The routines did addition, 
subtraction, and multiplication of quantities of the form 

CO + Cli (linear form in the a, j, i, j = 1, 4) 

+ C2 (quadratic form in the a, j, i, j = 1, 4), 

producing a result of the same form and neglecting the resulting higher order terms. 
It remains to choose the Xi so that Re{ a8} has a negative definite second variation at 
A 0 O. We observe that we lose no generality if we choose Xi real, since a complex 
part of X, would influence only the complex part of a8. Note the first variation of 
Re{a8} at A 0 is 0 since all coefficients are real. 

We set 

Ao = matrix corresponding to quadratic form of Re a8, 

A1 = matrix corresponding to quadratic form of C41Id 1, 

A2 = matrix corresponding to quadratic form of C41C13Id 1, 

A3 = matrix corresponding to quadratic form of C21Cl 1d 1, 

A4 = matrix corresponding to quadratic form of Cl,C33jd 1, 

A5 = matrix corresponding to quadratic form of Cl71d 1, 

A8 = matrix corresponding to quadratic form of C35Id 1, 

A7 = matrix corresponding to quadratic form of C3,5Id 2, 

A8 = matrix corresponding to quadratic form of C31 Id 2, 

A, = matrix corresponding to quadratic form of C331d 2, 

A1, = matrix corresponding to quadratic form of C331d 2, 

All = matrix corresponding to quadratic form of C1,Id 3, 

Al2 = matrix corresponding to quadratic form of C211d 3, 

A13 = matrix corresponding to quadratic form of C11(Id 1)2. 

We form 
13 

Ao + Xi Ai 
.-1 

for a choice of Xi and then use a standard eigenvalue code to find the maximum 
eigenvalue of the above. We introduced various minimization schemes to minimize 
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this maximum eigenvalue with respect to the parameters X,. We succeeded in finding 
a set of Xi for which the largest eigenvalue was negative, thus guaranteeing the nega- 
tive definiteness of the second variation of the formula for Re a8 and having therefore 
the desired local behavior at the Koebe point. We found that the choice of parameters 

= -19.235992432 X2 = -90.875000000 X3 = -1.187500000 

X4 = -4.555971146 As= -27.875000000 Xs = 12.437500000 

7= -12.254911423 X8 = -20.169921875 X = 0.000000000 

X1o = -0.937500000 X1 = -9.843718529 X12 = -6.562591553 

13= 1837.312500000 

produced A0 + Ej3 X;Ai shown below. The maximum eigenvalue of this matrix is 
less than -0.002. 

-1933.339111 987.395752 -843.616699 -22.043350 609.912354 
987.395752 -624.305420 453.139893 3.696342 -354.901123 

-843.616699 453.139893 - 384.766602 -6.748270 273.225098 
-22.043350 3.696342 -6.748270 -16.103760 4.645832 
609.912354 -354.901123 273.225098 4.645832 -208.730331 

0.637105 -8.416772 -2.630764 0.0 -4.035986 
-2.154895 -1.880836 0.0 -5.532904 -0.538724 
-1.625007 -0.030312 -2.660021 0.0 0.0 
-0.676123 0.0 -1.157980 -2.660021 0.0 

0.0 0.0 0.0 -1.157980 0.0 
0.0 

0.637105 -2.154895 -1.625007 -0.676123 0.0 
-8.416772 -1.880836 -0.030312 0.0 0.0 
-2.630764 0.0 -2.660021 -1.157980 0.0 

0.0 -5.532904 0.0 -2.660021 -1.157980 
-4.035986 -0.538724 0.0 0.0 0.0 
-3.138024 -0.338062 -1.274540 -0.538724 0.0 
-0.338062 -2.468379 0.0 -1.274540 -0.538724 
-1.274540 0.0 -0.812503 -0.338062 0.0 
-0.538724 -1.274540 -0.338062 -0.955359 -0.338062 

0.0 -0.538724 0.0 -0.338062 -0.142857 

The final expression for a8 corresponding to the choice of parameters above is 

as = 207.8369C71 - 675.0666C"IC13 - 408.1586C4 sC33 + 557.0915 C41 C5 
+ 13.9236C1C17 - 0.4247C31C35 + 600.2736C 1 13 + 1.6313C 1C55 

+ 698.7446ClC133- 908.8291 C21C3C15 + 206.4049C11C3 3 + 3.04255CIeC57 

+ 11.5142C11C13C35 + 10.0914C1,C13 + 367.9934C1iCis 

- 546.4514CjjC33C15 -8.4712C11C13CI7 + 2.1481C 1C37 + 5.5229C33C35 

+ 0.0731C13C55 + 3.8481C13C33 + 12.8204C17C15 - 0.3125C13CIs 

-5.8043C15C35 - 9.2917C17C33 + 1.4321C13C37 + 0.2857C77. 
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All coefficients have been truncated at four decimal places. 
Preliminary numerical testing of the expression with the C2,,1,2,-1, bound by 

unitary constraints, indicates the inequality 

Re a8 < 8 

holds for all parameter choices. Rigorous confirmation of this, of course, would 
establish the conjecture for the 8th coefficient. 
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APENDIX A 2 

a- a3 a4 a5 a8 a7 '8 a9 a wu 

1 - - c77 1/2 c59 1/2 
C3 

1 

1 1 --2 -7/ -51/ 
1- - - - x/2 x/2 -5/4 

-2 1 - - - -s33/8 57/16 35/6 
- - - - 1 - - - - -I ml -1 

1 2 - - - 29/8 3 2 

1 - -- - - -6 45/8 4 
1 3 -- -- - - -27/ -1tl/32 -25/8 
2 1-- 2 2 29/A6 
2 1 1 - - - - - -mAe -48/32 -285/32 
3 - 1 - - - -4 -123/32 -45/6 

3 2 - -- - - 603/32 I/12 525/84 
4 - 1 -- - -989/128 1713/25 1015/256 
5 - 1 - - - -4212 -5411/512 -21/4 

7? ? ? ? ? - 9617/364 4227/248 957/104 

_ _ _ _ _ _ _ I _ _ C,rb 1/2 C5179 1/2 
- - - 2 --9/8 -7/8 

_ 1- _ I -2 -7/A 
- 1 - - -1l - - - - -3/2 -3/2 
- 1 2 -- - - 39/8 15/4 
-2-1 - - - 89/16 57/1A 
- 4- -- - -289/128 -211/28 
1 -- - -- 1 - - - -1 -1 

1 - 1 1 - - - - - - 61/8 6 

11I - 1 - - - - - - 6 45/8 
1 2 1 - - - - - - - -741/32 -279/16 
2 ---- 1 - - - - 2 2 
) _ - - - - - - - 4-321/2 -15/2 
2 l - 1 - - - - - - -oi1/32 465/32 

2 3 - - - - - - - - s f., / 226/1s8 
3--- 1- -- - - -4 -123/32 



APPENDIX A (3) 

a2 a3 a4 5 a 7 8 a9 a10a 1 

3 1 1 -C79 2707/M4 c 251/8 5.111 
4 - - 1 - 2013/5 1713458 
4 2 - - --39/A024 -30345/o24 

1 - I - -7401/512 -2737/6 
a - - -4867/2048 324874048 
8 - - - - - - - - -1S489/32768 -ales/sat 



APPENX A(4) 

a2 a3 a4 a . a7 a8 a9 a0 'IIl a2 

~~~~ - - - 1 - -C1-/z Cg,l I 

~~ 1 ; - - 7.1162 
-9 

- 1 - I- - - - - -2 -2 
o _ 3 _ - _ _ _ _ 49/24 15/8 
-1I _ _ _ - -- 1- - - -3/2 -3/2 

1 1 I _ _ _ _ _ _ --- - - - -45/4 8s/8 
- 2 - -2 - _ 9 69/16 

-31 - - - - - - - 4~~~~~~-81/1 -319/22 
1 3 1 - - - - 1 - - - -1 I1 
1 - - 2 37/8 4 
1 - 1 - 1 - - - - - - 8 61/8 

1 1 - - - 1 - - - - - 6 - 6 
1 1 2 - - -117/4 -417/16 
1 2 - 1 - - - - - - - 417/16 -189/8 
1 4 23-1/128 115/8 
2 ----- 1 - 2 2 
2 - 1 1 - - - - - 3696 --/32 
2 1 - I - - - - -18 -561/M2 
2 2 1 5937/64 10425/128 
3 - -_-_ _-4 -4 
3 2---- - 8 - 9/2 1o1/4 
3 1 - I - - - O11A2 137/2 
3 3 - - - - - - - -3-eu/32 -n9ll8 
4 - - - - - - 8 2013/256 
4 1 1 - - - -27115/ti -47145/512 
3 - 1 - - - 4033/856 -933/64 
5 2 - - - - - - - - - 1030 A 37/512 
8 1 l 29639_104 51571/2048 
7 1 - - - - - -97421/1048 -81237/2048 
9 ---- - 21049/2902 49291/8192 



APPENIX A(S) 

0 3 a4 &5 S ?7 08 a9 ho l 2 

_ _ _ _- _ - - - - I - C 1/2 
- - - - 2 - - - - - - 91 -1/8 
- - - 1 - 1 - - - - - -5/2 
- - l - - - 1 - - e -2 

- - 2 1 - - - - - - - 55/8 
- 1 - - - - - I - - -3/2 
- I - 2 - - - -. - - - 51/8 
- 1 1 - 1 - - - - - - 93/8 
- 2 - - - 1 - - - - 9/2 
- 2 2 - - - - - - - - -l1/32 
- 3 - 1 - - - - - _ _-49/4 

- 5 - -- 633/128 
1 - - _ _ _ _ 1 I _ -I 

1 - - I 1 - - - - - - 77/8 
1 - 1 - - 1l - - - - 8/h 
1 - 3 - - - - - - - - -47/4 
1 1 - - - - 1 - - - - G 
1 1 1 1 - - - - - - - - 61029/6 
1 2 - - 1 - - - - - - 4-49/32 
1 3 1 - - - - - - - 54S7/64 
2 - - - - - - 1 - - 2 
2 - - 2 - - - - - - - 417/32 
2 - 1 - 1 - - - - - - -783/32 
2 1 - - - 1 - - - - - -18/ 
2 1 2 - - - - - - - -0/ 
2 2 - I - - - - - - - IS3 6 
2 4 - - - - - - - 43255/1. 
3 4- - - I _ _ _ _ - 
3 - 1 1 - - _ _ _ - 3731/f4 
3 I _ - 1 - - - - - - 037/f4 
3 _ I - - - - - - - - -74405/256 
4 - - - - 1 - - - - - 8 
4 - 2 - - - - - - - - 423 $/ 
*4 1 - 1 - - - - - - -3595/32 
4 3 - - _ - - - 236 A24 
5 - - - 1 - - -8129/512 
5 1 - - - - - - - - 4snsAo 
o _ - 1 - _ - - - - 1943/64 
6 2 - - --909 /40 
7 - 1 - - - - - - - - -221827/4096 
E f - - - - - - - - - 289413/32768 

- - - - _ - _ _ _ -15f7781/131072 



a a a APPENDIX AA(6) 
2 3 as a8 57 a8 % *10 aI1 ?12 

I -c 1/2 

_ _ - | - - l - - - _ _ ~~~~~~-5/2 
- - l - - - - 1 - - - -2 
- - 1 2 - - - - - - - 65/8 
- - 2 - 1 - - - - 61/8 
- 1 - - - - - _ 1 - _ _ -3/2 
- 1 - 1 1 - - - - - - - 57/4 
- 1 1 - _ I _ _ _ _ _ 12/ 

- 1 3 - - - - - - - - -139/8 
- 2 - - - - l - - - - 9`2 
- 2 I 1 - - - - - - - - -759/1 
_ 3 _ 1 - - - - - -211A6 
_ 4 1 - - - - - - - - 4009/128 
1 - - - - - - - - lI - -1 I - - - 2 - - - - - - - - 45/8 

- - I - l - - - - - 10 
1 - 1 - - - 1 - - - - - 8 

1 - 2 1 - - - - - - - -ls/4 
-1 - - - - 1G - - - 

1 1 - 2 - 13/4 
1 1 - - -6/8 

1 2 - - 
1 2 2 - - - - - - - - - 521742 
1 3 - 1 - - - - - - - - 98 
1 5 -72795/472 
2 - - - - - - 1 - - 2 
2 - - I 1 - - - - - _ -465A/ 
2 - I - - 1 - - - - - -24 
2 - 3 - - - - - - - - 47 
2 1 - - - - 1 - - - - -18 
2 1 1 1 _ - - - - _ - - 8241/32 
2 2 - - 68 - - - - 880/64 
2 3 1 - - - - - - - - - -15/128 
3 - - - - - - 1 - - - - -4 
3 - - 2 - - - - - - - - 1115/32 
3 - I - 1 - - - - - I- 201332 
3 1 - - - 1 - - - - - - 48 
3 1 2 - - - - - - - - - -3645/4 
3 2 - - - - - - - - - -21255/64 
3 4 - - - - - - - - - -109/5 
4 - 1 - - - - 8 
4 - 1 1 - - - - - - - - -37355/256 
4 - - 30405/26 
4 2 1 - - - - - - - - - 89329502o 
s - - - - 1 - - I _ _ _ -16 S - 2 - - - - - - - - - 77409/512 
5 1 - 1 - - - - - - - 34-/28 
5 3 - - - - - - - - - - -10367A6 
6 - - 1 - - - - - - 3t5/10.4 



APPENDIX AM 

a2 23 a4 '5 ' 'l 
a8 a 'No 'U a12 a13 

a 1 1 - - - - - - -113743/2048 
7 - - 1 - - - - - - - - -oA4 
7 2 - - - - - - 280248/4096 

- 1 - - -I - - - - - 30177/37"68 
9 1 - - - - - - - - - -2860103A063 
11 _ - _ _ - _ _ _ 31__ _A4792 



APPENDIX B (I) 

The intfrmaflon Is orpned In thU ame way " In ap x A (e.g.&a 2C + CII 2) 

C1.1 C1,3 C3.3 C3,5 C5.5 C5,7 C7.7 C7,7 C7,9 Co09 Co.11 .ll 1 

a2 1 2 2~~~~~~~~~~~~~~~~~~~~ 

?3 12 
2 3 

a3 2 
a4 1 2 

3 1Q/3 

a8 2 5 
1 1 8 
2 1 18 
4 7/3 

1 ~~~~~~~~~~~~~2 
% 

I 1 12 
1 1 8 
1 2 26 
2 1 18 
3 1 28 

17 2 1 2 
a7~~~~~~~~~~~~~~~~~~~~~~~~ 2 7 

I 21 
3 12 

1 1 8 
i I 1 62 
2 1 18 
2 2 73 
3 1 82/3 
4 1 88/3 
6 -202/45 



APPENDIX B (2) 

CI.1 Cl,3 C3.3 C3,5 C5,5 C5.7 C7.7 C7 9 C9.g9 9.11 C11.11 coefficit 

a8 1 1 1 2 
I I ~~~~~~~~~~~~~~~~16 

1 1 12 I 1~~~~~~~~~~~~~~~~2 
2 1 46 

1 1 8 
1 2 34 
1 1 1 64 
1 3 76 
2 1 18 
2 1 1 172 
3 1 e0/3 
3 2 410/3 
4 1 82/3 
3 1 184/15 
7 -2184/35 



APPENDIX B () 

C?A C1,3 C3.3 Cas, C355 C5,7 CT77 C7*9 C9.9 C91U C1l1l C lent 

a9 1 2 
2 9 

l l 1$ 
1 1 12 
1 2 So 
2 1 48 
4 28 

1 1 8 
1 1 1 78 
11 1 64 
1 2 1 2S8 
2 l 18 
2 2 91 
2 1 1S8 
2 3 248 
3 1 sofl 
3 1 1 320 
4 24 
4 2 173 
5 I WA/S 
6 1 -42/I 
8 -n1e/3 



A.EWSLL (4) 

Cl Cl 3 C3.3 C3 5 C5 5 C5,7 C7,7 C7, 9 C99 C911 C111 CoefioI 

a10 12 
20 0 ~~~~1 1 20 

1 1 16 
3 70/3 

1 1 12 
1 1 1 132 
2 l 50 
3 1 152 

1 l 8 
1 2 42 
1 1 1 80 
1 1 64 
1 1 2 364 
1 2 1 300 
1 4 200 
2 1 18 
2 1 1 208 
2 1 1 180 
2 2 1 938 
3 0/3 
3 2 482/ 
3 1 1 340 
3 3 1600/ 
4 1 70/3 
4 1 1 1204A 
5 1 -4/3 
5 2 310S 
6 I -2989 
7 1 - "SS/C 



C1 C13 C3.3 C3.5 C5.5 C5.7 C7,7 C7 9 C9.9 C90 u Cu I at 

1 2 
11 2 11 

1 1 20 

2 1 88 
I l 12 
1 2 72 
1 1 1 138 
2 1 50 
2 1 307 
3 1 158 
5 62 

1 1 8 
1 1 1 94 
1 1 1 80 
1 3 400 
1 1 1 64 
1 1 1 1 an 
1 2 1 310 
1 3 1 10l0 
2 1 16 
2 2 109 
2 1 1 216 
2 1 1 180 
2 1 2 1152 
2 2 1 990 
2 4 736 
3 1 80 
3 1 1 1096/3 
3 1 1 338 
3 2 1 6040/ 
4 1 70/3 
4 2 55/ 
4 1 1 129/ 
4 3 764 
5 1 -26 
5 I 1 1212/3 
6 1 -25I/4t 
6 2 -1280/9 
7 1 -"99 15 
8 1 -4646/ 
1o -"m13/i 



AuPPNX Bqe 

Cl C1 3 C3,3 C3 5 C 5,5 C5,7 %7 C7,9 C9,9 C9,11 ,u ei 

12 1 1 2 
1 1 24 

1 1 16 
1 2 102 
1 1 90 

I~~ 1 126 
1 1 1 144 
1 3 276 
2 1 s0 
2 1 1 672 
3 16" 
4 1 432 

1 1 8 

1 1 10 

1 2 1 50 

1 1 1 1 825 
1 1 1 312 
1 1 2 2138 
1 3 1 1148 
1 5 Sn0 
2 1 18 
2 1 1 244 
2 1 1216 
2 3 406 
2 1 118 
2 1 1 1 2671 
2 1 1 1018 
2 3 1 895 
3 1s801 
3 1 13t 
3 1 1 388 
3 1 1 338 
3 1 1 2411 
3 2 1 1148 
3 4 1736 
4 1 70/3 
4 1 1 1211) 
4 1 4 
4 2 1 87"4 
5 1-24/) 
5 1 74 
5 1 1 3952/15 
6 1 elMJ 

5 3 



APPDDIX B 7) 

C.1 C13 C3.3 C3,5 C5,5 C5.7 C7,7 C7,9 C99 C9,11 5L c..ms. 

6 I 1 -No 
7 1 -385721/35 
7 2 -176344/1 
8 1 -inssAos 
9 1 447&f15 
u 4528/46 



APPENDIX B(q 

Cl CI,3 CS,5 C3S7 CC7 CC7 9 C 9 C9 C9 u CU II 

C 1 
1.5 1 

3 -1/3 

C7 11 
2 1 

4 -1/ 

1 2 -l 
3 1 2/3 
5f -1/5 

Cl 9 1 1 
3 

1 1 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1 
1 2 1 
3 1 -l 
5 -1/5 

C3. 92 1 
1 1 1 
3 -2A/ 

1 1 1 -1 
3 1 1/3 
4 1 1/3 
6 -2/9 

C5.I I I c 
1~~1 1 

2 1 -2 
1 2 -1 

1 3 2 
3 1 -1J3 
3 2 -7/3 
4 1 2/3 
3 1 1 
7 -16/63 



APPVIX B (9) 
)0 

C1 l C 3 C3.3 C3,5 C5 C6.7 C7.7 C7,9 C9,9 C,l t qI,U C" 

Ci.u I2 1 
2 ~~~~~~~~~~~~~~~~~~2 

1 1 3 
3 1 

1 1 1 4 
2 2 2 
3 1 -4/3 
4 1 -4/3 
6 1/45 



APPENDIX B (10) 

C1.1 C13 C33 53. 5C.5 C57 C7.7 C7,9 9.9 C9.U cn, 1 

1 1 1 
2 1 -2 

1 2 -1 

1 3 -1 
3 2 2/5 
4 1 2/3 
5 l -1./6 

2 13 C 1 1 

1 2 -3 
2 1 -1 
4 1 

l 1 1 -1 
1 1 1 1 
1 2 1 2 
2 3 -I 
3 1 
3 1 1 -1 
4 1 l/ 
4 2 -2/h 
5 1 4/5 
6 1 7/15 

-1W C711 1 1 1 

3 -4/3 
1 1 1 -3 
2 1 
3 1 

I 2 -1 

I 1 2 5 
1 2 1 -5 
1 4 - 
2 2 1 -1 
3 2 -5/3 
3 1 1 4 

3 3 s22 
4 1 MIA 
4 I 1 ? 
5 l1_ 



APPENDIX B (1) 

C1.1 C1.3 C3,3 C3,5 C5.5 C5,7 07,7 Cy,9 C9,9 CUU 

(Continuod) 
071 s z -t3sAs 

7.11 G 
2 

61/45 
7 1 14/9 
9 -t3/405 



NOD FOR COLEX CISYuS 
WJDS@lATU 0 1- 1.1) 

H N 2 41) 47 

ONLY NODE IN FISr WJADRAW A LWD 
FOR EACH NLL PM061VW NE TEE IS A C ONWNO GATIVE NODE 
PM EaCH xOLE NOse Z, THERE. ARE TRAEE NO oMS 

Z. AR ITE OF D.. Z T S 



MOD" FM COLIX TV QJADRATUME 

MODES 

tEAL PrART PART 

07 702218403 

3 0. 0. 
0.70hlEO*f18I5E403 0. 

4 Oa0"SUh4W 0. 
4 O l90Mm721f1 0. 

$ Li3 0. 
5 O.3MHSPE 4W 0. 
5 0_fEdtOiSC 3 

6 O 1 -O5164W . 
G O*U2Silil O O. 64 

G 8.422SU3fh11E.0 0. 

r o.I4UIS0C60 o. 

7 O. C. 
7 Omni I BSISt*0 0. 
7 7. 121S2K4W C. 

a o.szswms.u+w oa4nns-o 
3 OSC$47US1E4 e 

3 O, 03 
0 0i671P214740 0. 

I OA2SM,3mOVwE4W 0, 

S 0 10 0. 

U 0.1 SiU1W434O0 0. 

10 eaI_ _400 07N E 01 
10 0m i400 O. 
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